Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.

نویسندگان

  • Sarah A Osmani
  • Søren Bak
  • Anne Imberty
  • Carl Erik Olsen
  • Birger Lindberg Møller
چکیده

The plant UDP-dependent glucosyltransferase (UGT) BpUGT94B1 catalyzes the synthesis of a glucuronosylated cyanidin-derived flavonoid in red daisy (Bellis perennis). The functional properties of BpUGT94B1 were investigated using protein modeling, site-directed mutagenesis, and analysis of the substrate specificity of isolated wild-type and mutated forms of BpUGT94B1. A single unique arginine residue (R25) positioned outside the conserved plant secondary product glycosyltransferase region was identified as crucial for the activity with UDP-glucuronic acid. The mutants R25S, R25G, and R25K all exhibited only 0.5% to 2.5% of wild-type activity with UDP-glucuronic acid, but showed a 3-fold increase in activity with UDP-glucose. The model of BpUGT94B1 also enabled identification of key residues in the acceptor pocket. The mutations N123A and D152A decreased the activity with cyanidin 3-O-glucoside to less than 15% of wild type. The wild-type enzyme activity toward delphinidin-3-O-glucoside was only 5% to 10% of the activity with cyanidin 3-O-glucoside. Independent point mutations of three residues positioned near the acceptor B ring were introduced to increase the activity toward delphinidin-3-O-glucoside. In all three mutant enzymes, the enzymatic activity toward both acceptors was reduced to less than 15% of wild type. The model of BpUGT94B1 allowed for correct identification of catalytically important residues, within as well as outside the plant secondary product glycosyltransferase motif, determining sugar donor and acceptor specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis

CY-007 and CY-049 pteridine glycosyltransferases (PGTs) that differ in sugar donor specificity to catalyze either glucose or xylose transfer to tetrahydrobiopterin were studied here to uncover the structural determinants necessary for the specificity. The importance of the C-terminal domain and its residues 218 and 258 that are different between the two PGTs was assessed via structure-guided do...

متن کامل

Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera).

We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltran...

متن کامل

A common structural blueprint for plant UDP-sugar-producing pyrophosphorylases.

Plant pyrophosphorylases that are capable of producing UDP-sugars, key precursors for glycosylation reactions, include UDP-glucose pyrophosphorylases (A- and B-type), UDP-sugar pyrophosphorylase and UDP-N-acetylglucosamine pyrophosphorylase. Although not sharing significant homology at the amino acid sequence level, the proteins share a common structural blueprint. Their structures are characte...

متن کامل

In-Silico Analysis of Binding Site Features and Substrate Selectivity in Plant Flavonoid-3-O Glycosyltransferases (F3GT) through Molecular Modeling, Docking and Dynamics Simulation Studies

Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 148 3  شماره 

صفحات  -

تاریخ انتشار 2008